a.) Find all possible JCFs of a 4 x 4 matrix whose minimal polynomial consists of two (possibly repeated) invariant factors.

The characteristic polynomial is equal to the product of the invariant factors; the minimal polynomial is the largest invariant factor; and each invariant factor divides the minimal polynomial. This implies that the only possibilities are

(i.)
$$m(x) = (x - a)(x - b)$$

(ii.) $m(x) = (x - a)^2 (x - b)$
(iii.) $m(x) = (x - a)(x - b)^2$ or
(iv.) $m(x) = (x - a)(x - b)^2$.
(iv.) $m(x) = (x - a)^2 (x - b)^2$.
(x-a) (x-b)³
(x-a) (x-b)³

The invariant factors are all products of the linear polynomials x - a and x - b, so the elementary divisors must be some number of x - a and some number of x - b. So, the Jordan Canonical Form is a diagonal matrix with some number of a and b on the diagonal.

Prove that the rank of an n x m nonzero matrix is equal to the largest positive integer t such that there exists a t x t submatrix of A whose determinant is nonzero.

(Aaron) Proceed by induction on n. In the inductive step, use elementary row and column operations to obtain a pivot in the first row and column; then, use the inductive hypothesis.

August 2018, Q4

Find the number of 2 x 2 matrices A over $\mathbb{Z}/\mathbb{p}\mathbb{Z}$ such that $\mathbb{A}^2 = \mathbb{I}$.

$$= (x-1)(x+1) \text{ (if p is odd), hence A is diagonalizable with eigenvalues 1 or -1, hence A is similar to \underline{I} , $\underline{-I}$, or diag $\{1, -1\}$. But any matrix that is similar to \underline{I} or $\underline{-I}$ must be itself be I or -I, so we$$

need only consider the case that A is similar to diag{1, -1}.

A is similar to D if and only if A is conjugate to D if and only if A belongs to the orbit of D with respect to conjugacy.

$$|O(D)| = |CL(2, \mathbb{Z}_p)|/|S+cb(D)| = (P^2-1)(p^2-p)/|S+cb(D)|$$

$$Stab(D) = \{P \mid PDP^{-1}\} = \{P \mid PD = DP\} = \{P \mid P \text{ commutes with D}\}$$

$$\begin{pmatrix} a & p \\ c & q \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} c & -q \\ c & -q \end{pmatrix}$$

These are equal if and only if b = 0 and c = 0.

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & -d \end{pmatrix}$$

Stab(D) = $\{diag\{a, d\} \mid a, d \text{ are nonzero and belong to } \mathbb{Z}/\mathbb{Z}\}$ $|Stab(D)| = (p - 1)(p - 1) = (p - 1)^2$

$$|O(D)| = (p^2 - 1)(p^2 - p)/(p - 1)^2 = p(p + 1) + |$$

$$p=a: M_A(x) | (x-1)^x$$

$$w_{A}(x) = x-1$$
 or $w_{A}(x) = (x-1)^{\lambda}$
 $+1$ $A \sim \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = J$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix}$$
These are equal if and only if $c = 0$ and $a = d$.

$$|O(1)| = (2^{L-1})(2^{L-2})/2 = 3+1$$

January 2017, Q1(iii.)

Find a prime number p, an integer n, and a non-abelian group of order p^n whose center contains more than one normal subgroup of order p.

Observation: n must be at least 4. Indeed, if n = 3, then by Lagrange's Theorem, |Z(G)| is either 1, p, or p^2. If |Z(G)| = 1 or p, then G contains at most one normal subgroup of order p.

If $|Z(G)| = p^2$, then |G/Z(G)| = p, hence G/Z(G) is cyclic so that G is abelian — a contradiction.

Let's construct a non-abelian group of order 2⁴ whose center contains more than one normal subgroup of order 2. (By what we just said, this is the smallest possible order of such a group.)

$$= \times : \mathbb{Z}_{4} \times_{4} \mathbb{Z}_{4} = \left(\mathbb{Z}_{4} \times \mathbb{Z}_{4} \right)$$

$$\left(\mathfrak{z}_{1}, h_{1} \right) \cdot \left(\mathfrak{z}_{2}, h_{2} \right) = \left(\mathfrak{z}_{1}^{+} \cdot^{4} \left(h_{1} \right) \left(\mathfrak{z}_{2}^{+} \right), h_{1}^{+} + h_{2} \right)$$

$$e: \mathbb{Z}_{4} \to Au + \left(\mathbb{Z}_{4} \right)$$

Fact: Aut(Z/nZ) are precisely multiplication by an integer k such that gcd(n, k) = 1.

In particular, we have that $Aut(Z/4Z) = \{1, 3\}$.

Fact (Proposition 21 from my note "Permutation Groups and the Semidirect Product"): For any semidirect product G \rtimes_f H, we have that

[Z(G) \cap Fix(f(H))] \times [Z(H) \cap ker(f)] \subseteq Z(G \rtimes H),

$$Z(Z_4) = Z_4 - Z(Z_4)$$
H= Z

$$F_{i\times}(\alpha(\mathbb{Z}^{4})) = F_{i\times}(A^{n+}(\mathbb{Z}^{4})) = \{0,2\}$$

$$keru = \{0, 3\}$$

$$\{(0,0), (0,\lambda)\} \leq \mathbb{Z}_{+} \times_{\mathbb{Z}_{+}} \mathbb{Z}_{+} = D$$

$$\{(0,0), (0,\lambda)\} \leq D, \qquad \{(0,0), (2,\lambda)\} \leq D$$

